
Enhancing Lunar Lander Performance with
Offline-Online Combined CQL-SAC Approaches

Abstract

In this project, we tackle the classic reinforcement learning challenge of the Lunar
Lander environment using a combination of Soft Actor-Critic (SAC) and Conserva-
tive Q-Learning (CQL). The objective of the project is to train an agent capable
of safely landing a spacecraft on the moon’s surface, optimizing fuel efficiency
and minimizing risks. By integrating SAC’s advantages in continuous action
spaces with CQL’s strength in managing overestimation bias and improving sample
efficiency, we develop a robust model that effectively balances exploration and
exploitation. Our methodology includes an initial training phase using SAC to
generate high-quality trajectories, followed by a combined online-offline training
phase utilizing both SAC and CQL. The experimental results demonstrate that
our approach accelerates learning, achieving faster convergence and higher per-
formance compared to traditional methods. This study provides valuable insights
into the potential of hybrid learning strategies in complex control tasks and sets
the groundwork for future research in applying advanced reinforcement learning
techniques to real-world problems.

1 Introduction

1.1 Problem Description

The Lunar Lander environment is based on a classic rocket trajectory optimization problem and
presents a classic reinforcement learning challenge where the objective is to control the spacecraft
to safely land on the surface of the moon while conserving fuel. In this problem, players are tasked
with mastering the adjustments of the spacecraft’s thrusters to achieve a smooth landing amidst
factors such as gravity and wind. This problem serves as a benchmark to evaluate and compare the
performance of various reinforcement learning algorithms in handling continuous action spaces and
sparse reward environments. The ultimate goal is to develop algorithms that can efficiently navigate
complex and uncertain scenarios, optimizing both safety and resource utilization.

OpenAI’s gym deployed an environment to the problem. The agent needs to adjust its actions
according to its coordinates, linear velocity and angular velocity in the x, y direction, and to finally
land on the landing pad located at (0, 0).

1.2 Objective

In this project, we aim towards training an agent to maximize average score for 100 consecutive
episodes in Lunar Lander environment. For reasons elaborated below, we resolve to choose Offline-
online combined CQL-SAC to be implemented as the core algorithm for our agent.

1.3 Algorithm Selection

Policy Optimization and Q-Learning are two main model-free RL approaches. While the former is
more principled and stable, the latter exploits sampled trajectories more efficiently. Soft Actor-Critic,
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or SAC, is an interpolation of both approaches. We select the algorithm for our experiment majorly
due to the following reasons:

1. SAC is designed to effectively handle environments with high-dimensional, continuous
action spaces. Although the Lunar Lander has a discrete action space, SAC’s strengths in
managing continuous controls can be adapted to discrete actions through various techniques,
such as using a Gumbel-SoftMax distribution. This capability is useful in finely controlling
the lander’s thrusters to achieve a smooth landing.

2. It is known for its sample efficiency and stability during training, which is critical in the
Lunar Lander setting where the agent must learn to balance and navigate the lander safely
to the target location without excessive trial and error, minimizing the risk of destructive
behaviors (like crashing).

3. It incorporates an entropy term that encourages exploration by making the policy stochastic.
This characteristic ensures that the agent explores a variety of strategies for landing, which
can be beneficial in discovering efficient maneuvers that use less fuel or achieve quicker
stabilization.

We then address overestimation bias, one of the common problems in Q-learning approaches, with
applying Conservative Q-Learning (CQL), which conservatively regularizes the learned Q-values
against unseen actions, promoting more reliable and stable learning outcomes. This is particularly
important in the Lunar Lander task where overestimating the value of risky actions (like firing engines
excessively) can lead to poor performance and catastrophic failures. CQL also effectively reduces
extrapolation errors where the model would otherwise make unfounded assumptions about unseen
actions.

Furthermore, we resolve to adopt a combined online-offline approach, where we first train a SAC
agent to generate trajectories that are stored in a replay buffer, and then train a CQL-SAC agent online
combined with this offline data. Again, this method is justifiable from the basis that:

1. by first training an SAC agent, we can ensure that the data collected in the replay buffer
is of high quality. SAC, known for its stability and efficiency in continuous action spaces,
can explore the environment effectively and generate diverse yet successful trajectories.
These trajectories form a rich dataset that contains valuable state-action experiences across
a variety of situations.

2. offline data improves sample efficiency because the agent does not have to explore potentially
suboptimal actions during its training phase, reducing the amount of experience needed to
reach effective performance levels, accelerating the learning process.

2 Methodology

2.1 Environment Setup

In the LunarLander-v2 environment deployed by OpenAI’s gym, the Lunar Lander problem is
simplified to 8 state spaces and 4 action spaces.

The state spaces can be denote as tuple(x, y, ẋ, ẏ, θ, θ̇, legl, legr), where x and y represents the
coordinates of the lander, ẋ and ẏ represents the velocity of the lander in both directions, θ and
θ̇ represents the angle and angular velocity of the lander. legl and legr are Boolean and indicate
whether the lander’s legs are in contact with land.

The action spaces include four discrete actions: do nothing, fire left orientation engine, fire main
engine, fire right orientation engine.

2



Assuming agent policy π, the score of the nnth episode represents as sn,π =
T∑

t=0
r(st, at) . The our

objective function is expressed as argmax
π

100∑
n=1

1
100sn,π , where

r(st, at) =



100, if "land"
−100, if "crash"
10, legl or legr = 1

−0.5, at = "fire main engine"
−0.05, at = "fire side engine"

(1)

2.2 Policy Gradient

Following stochastic parameterized policy πθ, we can sample trajectory τ. The aim is to maximize
the expected return J (πθ) = E

τ∼πθ

[R(τ)]. We aim to update θ via gradient descent θk+1 = θk +

α∇θJ (πθ)|θk .

The gradient ∇θJ (πθ) can be expanded into:

∇θJ (πθ) = ∇θ E
τ∼πθ

[R(τ)]

= ∇θ

∫
τ

P (τ | θ)R(τ)

=

∫
τ

∇θP (τ | θ)R(τ)

=

∫
τ

P (τ | θ)∇θ logP (τ | θ)R(τ)

= E
τ∼πθ

[∇θ logP (τ | θ)R(τ)]

= E
τ∼πθ

[
T∑

t=0

∇θ log πθ (at | st)R(τ)

]
.

(2)

2.3 Entropy-Regularized Reinforcement Learning

Q-function tends to dramatically overestimate Q-values, which then leads to the policy breaking
because it exploits the errors in the Q-function. To address this issue, we ought to discount the
Q-values by some metric.

The entropy H of a random variable x ∼ P is defined as:

H(P ) = E
x∼P

[− logP (x)] (3)

At each time step t, we give the agent a bonus reward proportional to the entropy of the policy. The
Bellman Equation is thus changed to:

Qπ(s, a) = E
s′∼P
a′∼π

[R (s, a, s′) + γ (Qπ (s′, a′) + αH (π (· | s′)))]

= E
s′∼P
a′∼π

[R (s, a, s′) + γ (Qπ (s′, a′)− α log π (a′ | s′))]
(4)

where α is the trade-off coefficient (or temperature). Higher temperature encourages early exploration
and prevents the policy from prematurely converging to a bad local optimum.

We can approximate the expectation with samples from the action space:

Qπ(s, a) ≈ r + γ (Qπ (s′, ã′)− α log π (ã′ | s′)) , ã′ ∼ π (· | s′) (5)
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2.4 Q-Learning Side of SAC

2.4.1 Mean Squared Bellman Error

The Bellman equation describing the optimal action-value function is given by:

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗ (s′, a′)

]
(6)

With sampled trajectories (s, a, r, s′, d) stored in replay buffer D, we learn an approximator to
Q∗(s, a) with neural network Qϕ(s, a).

The mean squared Bellman Error (MSBE) is computed as:

L(ϕ,D) = E
(s,a,r,s′,d)∼D

[(
Qϕ(s, a)−

(
r + γ(1− d)max

a′
Qϕ (s

′, a′)
))2]

(7)

where d = 1 if s′ is a terminal state and 0 otherwise.

2.4.2 Target Networks

The optimization target is given by:

y (r, s′, d) = r + γ(1− d)max
a′

Qϕ (s
′, a′) (8)

Since we wish to get rid of the parameters ϕ in the target to stabilize the training process, we replace
it with the target network ϕtarg which is cached and only updated once per main network update by
Polyak averaging:

ϕtarg ← ρϕtarg + (1− ρ)ϕ. (9)

2.4.3 Clipped double-Q

To further suppress Q-values, in SAC we learn two Q-functions instead of one, regressing both sets of
parameter ϕ with a shared target, calculated with the smaller Q-value of the two:

y (r, s′, d) = r + γ(1− d) min
i=1,2

(
max
a′

Qϕi,targ (s
′, a′)

)
,

L (ϕi,D) = E(s,a,r,s′,d)∼D

[
(Qϕi

(s, a)− y (r, s′, d))
2
]
.

2.5 Policy Learning Side of SAC

Since calculating maxa Qϕ(s, a) is expensive, we can approximate it with maxa Q(s, a) ≈
Qϕ(s, µθtarg(s)), where µθtarg is the target policy. The objective then becomes to learning a policy
that maximizes Qϕ(s, a) : maxθ E

s∼D
[Qϕ (s, µθ(s))] .

Here we adopt a squashed state-dependent gaussian policy:

ãθ(s, ξ) = tanh (µθ(s) + σθ(s)⊙ ϵ) , ϵ ∼ N (0, I). (10)

Under the context of Entropy-Regularized Reinforcement Learning, we modify the target with:

y (r, s′, d) = r + γ(1− d)

(
min
j=1,2

Qϕtar,j (s
′, ã′)− α log πθ (ã

′ | s′)
)
, ã′ ∼ πθ (· | s′) (11)

This reparameterization removes the dependence of the expectation on policy parameters:
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E
a∼πθ

[Qπθ (s, a)− α log πθ(a | s)] = E
ξ∼N

[Qπθ (s, ãθ(s, ξ))− α log πθ (ãθ(s, ξ) | s)] (12)

We perform a gradient ascent optimization:

max
θ

E
s∼D
ξ∼N

[
min
j=1,2

Qϕj (s, ãθ(s, ξ))− α log πθ (ãθ(s, ξ) | s)
]
, (13)

2.6 CQL-SAC

Since we’re trying to do offline-online combined updates for performance improvement, we need to
tackle with the offline reinforcement learning problem with generated samples. From prior works
regarding offline RL [1][3], OOD actions and function approximation errors will pose problems for
Q function estimation. Therefore, we adopt conservative Q-learning method proposed by prior work
[4] to address this issue.

2.6.1 Conservative Off-Policy Evaluation

We aim to estimate the value V π(s) of a target policy π given access to a dataset Dβ generated by
pretrained SAC behavioral policy πβ(a|s). Because we are interested in preventing overestimation
of the policy value, we learn a conservative, lower-bound Q-function by additionally minimizing
Q-values alongside a standard Bellman error objective. Our choice of penalty is to minimize the
expected Q-value under a particular distribution of state-action pairs µ(s, a). We can define a iterative
optimization for training the Q-function:

Q̂k+1 ← argminQαEs∼Dβ ,a∼µ(a|s)[Q(s, a)] +
1

2
Es,a∼Dβ [(Q(s, a)− B̂πQ̂k(s, a))2] (14)

where B̂π is the Bellman operator and α is the tradeoff factor. The optimality for this update as:
Q̂π = limk→∞ Q̂k and we can show it lower-bounds Qπ for all state-action pairs (s, a). We can
further tighten this bound if we are only interested in estimating V π(s). In this case, we can improve
our iterative process as:

Q̂k+1 ← argminQα(Es∼Dβ ,a∼µ(a|s)[Q(s, a)]− Es∼Dβ ,a∼πβ(a|s)[Q(s, a)])

+
1

2
Es,a∼Dβ [(Q(s, a)− B̂πQ̂k(s, a))2]

(15)

By adding a Q-maximizing term, although it may not be true for Q̂π being the point-wise lower-bound
for Qπ, we still have Eπ(a|s)[Q̂

π(s, a)] ≤ V π(s) when µ(a|s) = π(a|s). For detailed theoretical
analysis, we will refer to Appendix B.

2.6.2 Conservative Q-Learning for Offline RL

We now adopt a general approach for offline policy learning, which we refer to as conservative
Q-learning (CQL). This algorithm was first presented by prior work [4]. We denote CQL(R) as
a CQL algorithm with a particular choice of regularizerR(µ). We can formulate the optimization
problem in a min-max fashion:

minQmaxµα(Es∼Dβ ,a∼µ(a|s)[Q(s, a)]− Es∼Dβ ,a∼πβ(a|s)[Q(s, a)])

+
1

2
Es,a,s′∼Dβ [(Q(s, a)− B̂πkQ̂k(s, a))2] +R(µ)

(16)

Since we’re utilizing CQL-SAC, we will chose the regularizer as the entropy H , making it CQL(H).
In this case, the optimization problem will be reduced as:
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minQ

{
αEs∼Dβ (log

∑
a

exp(Q(s, a))− Es∼Dβ ,a∼πβ(a|s)[Q(s, a)])

+
1

2
Es,a,s′∼Dβ [(Q(s, a)− B̂πkQ̂k(s, a))2]

} (17)

More specifically, we let the regularizerR(µ) = −DKL(µ, ρ), where ρ(a|s) is a prior distribution.
We can then derive µ(a|s) ∝ ρ(a|s) exp(Q(s, a)). We take the prior distribution as a uniform
distribution ρ = Unif(a), making the regularizer as the entropy H . In this way, we can retrieve the
optimization target above. For detailed derivations and theoretical analysis we refer to Appendix B.

2.7 Model Architecture

Architecture for SAC and its CQL-modified version is illustrated as Figure 1:

Figure 1: (CQL-)SAC Architecture

The overall pipeline is visualized as Figure 2:

Figure 2: CQL-SAC Pipeline
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2.8 Hyperparameters

The hyperparameters commonly used for the CQL-SAC algorithm and their rationale behind selection
are as follows:

• Batch size: The batch size determines the number of experiences sampled from the replay
buffer for each training iteration. Our selected value is 256.

• Episodes: The number of episodes defines the total number of episodes the agent will run
during training. Our selected value is 1000.

• Buffer size: The buffer size refers to the max capacity of the replay buffer, which stores past
experiences for training the agent. Our selected value is 100000.

• Learning rate: The learning rate controls the step size of the gradient descent optimization
process. It influences the speed and quality of learning. Our selected value is 5e− 4.

• Discount factor (γ): The discount factor determines the importance of future rewards in the
agent’s decision-making process. Our selected value is 0.99.

• Soft update coefficient (τ ): By gradually blending the parameters of the target networks
with those of the current networks, τ determines the rate at which the target networks are
updated. Our selected value is 0.01.

3 Results

3.1 Training Performance

Figure 3: SAC Reward

Figure 4: CQL-SAC Reward

Figure 3 and 4 visualizes the rewards at each training epoch for both SAC and CQL-SAC training
procedures. We can clearly observe the accelerating effects of the offline dataset generated by the
former agent on the latter, in that the CQL-SAC agent reaches reward saturation and stabilizes at

7



around 200 episodes, whereas in comparison it takes the SAC agent approximately 400 episodes to
do so. The CQL-SAC also obtains higher average and maximal rewards than the naive SAC agent,
however it is not evident due to the relatively low dimensions of the lunar lander environment.

It is also worth noting the CQL-SAC agent continues to produce anomalies after convergence
more frequently than the SAC agent, due to the fact that it regularizes the Q-function and prevents
over-fitting towards overestimated Q-values.

3.2 Evaluation

After the entire training process is completed, we ran 1000 consecutive episodes with the trained
agent and concluded that all sliding windows of 100 consecutive episodes have an average reward
> 245, which is generally satisfactory despite a few anomalies which are inevitable.

[a] [b]

Figure 5: Evaluation Results

3.3 Hyperparameter Sensitivity

After an SAC agent capable of generating high-quality trajectories is trained, it will be utilized
to sample episodes that would be dumped into the replay buffer of the CQL-SAC agent, which
would take up a certain percentage ρ in its training data. This section will mainly emphasize on the
influence of that proportion on the offline-online CQL-SAC agent’s performance. For a fixed amount
of online data sampled (200 episodes), we take seven discrete offline dataset sizes which corresponds
to ρ ∈ [20%, 78%], and plot the following figures to support our analysis.

Figure 6: Converging speed for Different ρ

Figure 6 illustrates changes in the CQL-SAC agent’s rewards during its training process. It can be
observed the two highest offline portions converges more slowly to scores over 200, while there is no
significant difference among the rest.

Figure 7 depicts the mean of the initial 100 episodes sampled by the trained CQL-SAC agent. It
shows that in general, higher ρ corresponds to higher average rewards until over proportioning.

These results are potentially due to the fact that during the training process, trajectories generated by
a CQL-SAC of a later stage is of even higher quality than the average offline data, thus over-flooding
the replay buffer could restrain the performance growth. Thus, it is crucial to maintain a balanced
overall dataset.
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Figure 7: Evaluation mean for Different ρ

4 Discussion

4.1 Algorithm Analysis

CQL-SAC exhibits promising results in tackling the Lunar Lander problem by effectively improving
sample efficiency, striking a balance between exploration and exploitation, and reducing overestima-
tion bias. These strengths contribute to its competitive performance in maximizing return in complex
continuous control tasks.

However, the algorithm also has some weaknesses that deserve attention. Like many deep rein-
forcement learning algorithms, CQL-SAC’s performance can be sensitive to hyperparameter tuning.
Finding the right combination of hyperparameters for optimal performance can be a challenging and
time-consuming process. This part of the work has been explored by the previous researches, so it
did not cause us too many difficulties. Additionally, the use of multiple Q-function ensembles and the
conservative updates in CQL can increase the computational complexity of the algorithm, potentially
requiring more computational resources and training time.

4.2 Challenges and Solutions

We did not encounter any major difficulties when conducting this project. However, due to the inherent
drawbacks of SAC and CQL methods, we noticed several schemes that could further optimize our
algorithm. For example, when the state visitation distribution of offline data is narrow, the agent
is more likely to have a distribution shift, and if the environment is explored in advance, finding
high-quality samples close to the strategy can reduce such shift errors. In addition, since the Q
function cannot provide an accurate estimate for the online sample outside such distributions, using
multiple Q functions to pessimistically evaluate the current strategy can prevent over-optimism about
unfamiliar actions in the new state during the initial training phase.

5 Conclusion and Future Work

5.1 Summary of Findings

In summary, we implemented the CQL-SAC algorithm to solve the Lunar Lander continuous control
task, as well as explored its strengths and weaknesses. The experiment results show that the CQL-
SAC algorithm, with its conservative updates and trade-off between exploration and exploitation, is
quite effective in solving complex continuous control tasks. Yet, its performance can be sensitive to
hyperparameter tuning and may require more computational resources due to increased complexity.

5.2 Future Improvements

Since CQL and SAC algorithms are all model-free methods, it may pose generalization problem to the
agent. Therefore, it may be helpful to adopt model-based algorithms to improve the generalizability.
By predicting the forward dynamics p(st+1|st), the model can retrieve the information of the
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environment dynamics instead of only blindly predict the action. We also may include balanced
buffer and ensembles for Q estimation for further improvement.
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A Pseudocode

Algorithm 1: Soft Actor-Critic
input : θ1, θ2, ϕ // Initial parameters
arθ1 ← θ1, arθ2 ← θ2 // Initialize target network weights
D ← ∅ // Initialize an empty replay pool
for each iteration do

for each environment step do
at ∼ πϕ(at|st) // Sample action from the policy
st+1 ∼ p(st+1|st, st) // Sample transition from the environment
D ← D ∪ {(st, at, r(st, at), st+1)} // Store the transition in the replay pool

end
for each gradient step do

θi ← θi − λQ∇̂θiJ(θi) for i ∈ {1, 2} // Update the Q-function parameters
ϕ← ϕ− λπ∇̂ϕJπ(ϕ) // Update policy weights
α← α− λ∇̂αJ(α) // Adjust temperature
arθi ← τθi + (1− τ)arθi for i ∈ {1, 2} // Update target network weights

end
end
output :θ1, θ2, ϕ // Optimized parameters

Algorithm 2: Conservative Q-Learning
Initialize Q-function, Qθ , and optionally a policy, πϕ.
for step t in {1, . . . , N} do

Train the Q-function using GQ gradient steps on objective from Equation 17
θt := θt−1 − ηQ∇θCQL(R)(θ) (Use B∗ for Q-learning, Bπϕt for actor-critic)
Improve policy πϕ via Gπ gradient steps on ϕ with SAC-style entropy regularization:
ϕt := ϕt−1 + ηπEs∼D,a∼πϕ(·|s)[Qθ(s, a)−log πϕ(a|s)]

end
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B Theoretical Analysis and Additional Proofs

For completeness, in this section we provide the theoretical analysis for conservative Q-learning
method brought from [4].

Theorem B.1 For any µ(a|s) withµ ⊂ π̂β , with probability ≥ 1− δ, Q̂π (the Q-function obtained
by iterating Equation 14) satisfies:

∀s ∈ Dβ , a, Q̂π(s, a) ≤ Qπ(s, a)−α
[
(I − γPπ)

−1 µ

π̂β

]
(s, a)+

[
(I − γPπ)−1 Cr,T,δRmax

(1− γ)
√
|Dβ |

]
(s, a).

Thus, if α is sufficiently large, then hatQπ(s, a) ≤ Qπ(s, a),∀s ∈ Dβ , a. When B̂π = Bπ, any
α > 0 guarantees Q̂π(s, a) ≤ Qπ(s, a),∀s ∈ Dβ , a ∈ A.

Proof In order to start, we first note that the form of the resulting Q-function iterate, Q̂k, in the
setting without function approximation. By setting the derivative of Equation 14 to 0, we obtain the
following expression for Q̂k+1 in terms of Q̂k,

∀ s, a ∈ Dβ , k, Q̂k+1(s, a) = B̂πQ̂k(s, a)− α
µ(a|s)
π̂β(a|s)

. (18)

Now, since, µ(a|s) > 0, α > 0, π̂β(a|s) > 0, we observe that at each iteration we underestimate the
next Q-value iterate, i.e. Q̂k+1 ≤ B̂πQ̂k.

Theorem B.2 (Equation 15 results in a tighter lower bound) The value of the policy under the
Q-function from Equation 15, V̂ π(s) = Eπ(a|s)[Q̂

π(s, a)], lower-bounds the true value of the policy
obtained via exact policy evaluation, V π(s) = Eπ(a|s)[Q

π(s, a)], when µ = π, according to:

∀s ∈ Dβ , V̂ π(s) ≤ V π(s)−α
[
(I − γPπ)

−1 Eπ

[
π

π̂β
− 1

]]
(s)+

[
(I − γPπ)−1 Cr,T,δRmax

(1− γ)
√
|Dβ |

]
(s).

Thus, if α >
Cr,TRmax

1−γ ·maxs∈Dβ

1

|
√

|Dβ(s)|
·
[∑

a π(a|s)(
π(a|s)

π̂β(a|s)) − 1)
]−1

, ∀s ∈ Dβ , V̂
π(s) ≤

V π(s), with probability≥ 1− δ. When B̂π = Bπ , then any α > 0 guarantees V̂ π(s) ≤ V π(s),∀s ∈
Dβ .

Proof We prove this theorem in the absence of sampling error, and then we refer to [4] for the proof
regarding the sampling error. In the tabular setting, we can set the derivative of the modified objective
in Equation 15, and compute the Q-function update induced in the exact, tabular setting (this assumes
B̂π = Bπ) and πβ(a|s) = π̂β(a|s)).

∀ s, a, k Q̂k+1(s, a) = BπQ̂k(s, a)− α

[
µ(a|s)
πβ(a|s)

− 1

]
. (19)

Note that for state-action pairs, (s, a), such that, µ(a|s) < πβ(a|s), we are in fact adding a positive
quantity, 1− µ(a|s)

πβ(a|s) , to the Q-function obtained, and this we cannot guarantee a point-wise lower

bound, i.e. ∃ s, a, s.t. Q̂k+1(s, a) ≥ Qk+1(s, a). To formally prove this, we can construct a
counter-example three-state, two-action MDP, and choose a specific behavior policy π(a|s), such
that this is indeed the case.

The value of the policy, on the other hand, V̂ k+1 is underestimated, since:

V̂ k+1(s) := Ea∼π(a|s)

[
Q̂k+1(s, a)

]
= BπV̂ k(s)− αEa∼π(a|s)

[
µ(a|s)
πβ(a|s)

− 1

]
. (20)
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and we can show that DCQL(s) :=
∑

a π(a|s)
[

µ(a|s)
πβ(a|s) − 1

]
is always positive, when π(a|s) =

µ(a|s). To note this, we present the following derivation:

DCQL(s) :=
∑
a

π(a|s)
[
µ(a|s)
πβ(a|s)

− 1

]
=
∑
a

(π(a|s)− πβ(a|s) + πβ(a|s))
[
µ(a|s)
πβ(a|s)

− 1

]
=
∑
a

(π(a|s)− πβ(a|s))
[
π(a|s)− πβ(a|s)

πβ(a|s

]
+
∑
a

πβ(a|s)
[
µ(a|s)
πβ(a|s)

− 1

]

=
∑
a

[
(π(a|s)− πβ(a|s))2

πβ(a|s)

]
︸ ︷︷ ︸

≥0

+ 0 since,
∑
a

π(a|s) =
∑
a

πβ(a|s) = 1.

Note that the marked term, is positive since both the numerator and denominator are positive, and
this implies that DCQL(s) ≥ 0. Also, note that DCQL(s) = 0, iff π(a|s) = πβ(a|s). This implies that
each value iterate incurs some underestimation, V̂ k+1(s) ≤ BπV̂ k(s).

Now, we can compute the fixed point of the recursion in Equation 20, and this gives us the following
estimated policy value:

V̂ π(s) = V π(s)− α

(I − γPπ)−1︸ ︷︷ ︸
non-negative entries

Eπ

[
π

πβ
− 1

]
︸ ︷︷ ︸

≥0

 (s),

thus showing that in the absence of sampling error, Theorem B.2 gives a lower bound. It is straight-
forward to note that this expression is tighter than the expression for policy value in Proposition B.2,
since, we explicitly subtract 1 in the expression of Q-values (in the exact case) from the previous
proof.

Theorem B.3 (CQL learns lower-bounded Q-values) Let πQ̂k(a|s) ∝ exp(Q̂k(s, a)) and assume

that DTV(π̂
k+1, πQ̂k) ≤ ε (i.e., π̂k+1 changes slowly w.r.t to Q̂k). Then, the policy value under Q̂k,

lower-bounds the actual policy value, V̂ k+1(s) ≤ V k+1(s)∀s if

Eπ
Q̂k (a|s)

[
πQ̂k(a|s)
π̂β(a|s)

− 1

]
≥ max

a s.t. π̂β(a|s)>0

(
πQ̂k(a|s)
π̂β(a|s)

)
· ε.

Proof In order to prove this theorem, we compute the difference induced in the policy value, V̂ k+1,
derived from the Q-value iterate, Q̂k+1, with respect to the previous iterate BπQ̂k. If this difference
is negative at each iteration, then the resulting Q-values are guaranteed to lower bound the true policy
value.

Eπ̂k+1(a|s)[Q̂
k+1(s, a)] = Eπ̂k+1(a|s)

[
BπQ̂k(s, a)

]
− Eπ̂k+1(a|s)

[
πQ̂k(a|s)
π̂β(a|s)

− 1

]

= Eπ̂k+1(a|s)

[
BπQ̂k(s, a)

]
− Eπ

Q̂k (a|s)

[
πQ̂k(a|s)
π̂β(a|s)

− 1

]
︸ ︷︷ ︸

underestimation, (a)

+
∑
a

(
πQ̂k(a|s)− π̂k+1(a|s)

)
︸ ︷︷ ︸

(b), ≤DTV(π
Q̂k ,π̂k+1)

πQ̂k(a|s)
π̂β(a|s)
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If (a) has a larger magnitude than (b), then the learned Q-value induces an underestimation in an
iteration k + 1, and hence, by a recursive argument, the learned Q-value underestimates the optimal
Q-value. We note that by upper bounding term (b) by DTV(πQ̂k , π̂k+1) ·maxa

π
Q̂k (a|s)
π̂β(a|s) , and writing

out (a) > upper-bound on (b), we obtain the desired result.

Finally, we show that under specific choices of α1, · · · , αk, the CQL backup is gap-expanding by
providing a proof for Theorem B.4

Theorem B.4 (CQL is gap-expanding) At any iteration k, CQL expands the difference in expected
Q-values under the behavior policy πβ(a|s) and µk, such that for large enough values of αk, we have
that ∀s, Eπβ(a|s)[Q̂

k(s, a)]− Eµk(a|s)[Q̂
k(s, a)] > Eπβ(a|s)[Q

k(s, a)]− Eµk(a|s)[Q
k(s, a)].

Proof For this theorem, we again present the proof in the absence of sampling error, referring to [4]
for the proof incorporating sampling error. We follow the strategy of observing the Q-value update in
one iteration. Recall that the expression for the Q-value iterate at iteration k is given by:

Q̂k+1(s, a) = Bπ
k

Q̂k(s, a)− αk
µk(a|s)− πβ(a|s)

πβ(a|s)
.

Now, the value of the policy µk(a|s) under Q̂k+1 is given by:

Ea∼µk(a|s)[Q̂
k+1(s, a)] = Ea∼µk(a|s)[B

πk

Q̂k(s, a)]− αk µT
k

(
µk(a|s)− πβ(a|s)

πβ(a|s)

)
︸ ︷︷ ︸
:=∆̂k,≥0, by proof of Theorem B.2.

Now, we also note that the expected amount of extra underestimation introduced at iteration k under
action sampled from the behavior policy πβ(a|s) is 0, as,

Ea∼πβ(a|s)[Q̂
k+1(s, a)] = Ea∼πβ(a|s)[B

πk

Q̂k(s, a)]− αk π
T
β

(
µk(a|s)− πβ(a|s)

πβ(a|s)

)
︸ ︷︷ ︸

=0

.

where the marked quantity is equal to 0 since it is equal since πβ(a|s) in the numerator cancels with
the denominator, and the remaining quantity is a sum of difference between two density functions,∑

a µk(a|s)− πβ(a|s), which is equal to 0. Thus, we have shown that,

Eπβ(a|s)[Q̂
k+1(s, a)]−Eµk(a|s)[Q̂

k+1(s, a)] = Eπβ(a|s)[B
πk

Q̂k(s, a)]−Eµk(a|s)[B
πk

Q̂k(s, a)]−αk∆̂
k.

Now subtracting the difference, Eπβ(a|s)[Q
k+1(s, a)]− Eµk(a|s)[Q

k+1(s, a)], computed under the
tabular Q-function iterate, Qk+1, from the previous equation, we obtain that

Ea∼πβ(a|s)[Q̂
k+1(s, a)]− Eπβ(a|s)[Q

k+1(s, a)] = Eµk(a|s)[Q̂
k+1(s, a)]− Eµk(a|s)[Q

k+1(s, a)]

+ (µk(a|s)− πβ(a|s))T
[
Bπ

k
(
Q̂k −Qk

)
(s, ·)

]
︸ ︷︷ ︸

(a)

−αk∆̂
k.

Now, by choosing αk, such that any positive bias introduced by the quantity (µk(a|s)−πβ(a|s))T (a)
is cancelled out, we obtain the following gap-expanding relationship:

Ea∼πβ(a|s)[Q̂
k+1(s, a)]− Eπβ(a|s)[Q

k+1(s, a)] > Eµk(a|s)[Q̂
k+1(s, a)]− Eµk(a|s)[Q

k+1(s, a)]

for, αk satisfying,

αk > max

 (πβ(a|s)− µk(a|s))T
[
Bπk

(
Q̂k −Qk

)
(s, ·)

]
∆̂k

, 0

 ,

thus proving the desired result.

To avoid the dependency on the true Q-value iterate, Qk, we can upper-bound Qk by Rmax

1−γ , and upper-

bound (πβ(a|s)− µk(a|s))TBπ
k

Qk(s, ·) by DTV(πβ , µk) · Rmax

1−γ , and use this in the expression for
αk. While this bound may be loose, it still guarantees the gap-expanding property.
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