Revisiting Temporal Difference Learning:
A Replication Study of Sutton’s TD()\) Methods

Abstract

This report revisits Richard S. Sutton’s seminal
TD(A) methods by replicating the experiments
from his 1988 paper on the random walk predic-
tion problem. We evaluate the robustness and ap-
plicability of TD learning through a comparative
analysis of supervised learning and TD()) strate-
gies. Our findings confirm the efficacy of TD()\)
in learning from temporal differences and adapt-
ing to partial information. Adjustments in learn-
ing parameters like rate and convergence thresh-
olds highlight their impact on learning outcomes,
especially the influence of \ values on prediction
accuracy and efficiency. This study supports the
foundational principles of TD learning and cor-
roborates its relevance through rigorous empirical
validation.

1. Introduction

In his paper “Learning to Predict by the Methods of Tem-
poral Differences”, Sutton[1] proposed T'D()), a class of
incremental model-free prediction-learning procedures, syn-
thesizing Monte-Carlo learning and previous works on Tem-
poral Difference methods[2]. He further demonstrates their
convergence and optimality with respect to the Widrow-
Hoff approach.

Central to Sutton’s discourse are experiments on a random
walk prediction problem, showcasing the efficacy of 7D (\)
methods, particularly in Figures 3, 4, and 5 . The repli-
cation of these experiments is crucial for reinforcing the
foundational principles of TD learning and examining their
applicability in contemporary contexts.

2. Methodology
2.1. Computation Theory of T'D methods

Sutton began by distinguishing between single-step and
multi-step prediction-learning problems. He concluded that
T'D is only distinguishable from supervised-learning meth-

Preliminary work. Under review by the International Confer-
ence on Machine Learning (ICML). Do not distribute.

ods under the latter context, where only partial information
related to the correctness of a prediction is revealed at each
time step, due to its ability to learn from incomplete infor-
mation.

2.1.1. SUPERVISED LEARNING APPROACH

Define an observation-outcome sequence:xi, T3, T3, - - .,
ZTm, 2, Where x; denotes the observation at time step ¢, and
z is the terminal outcome.

For each z;, we can produce prediction:

P(zy,w) =wlz, = Zw(z)xt(z) (1)

%

as an estimated value of z, where w is a vector of trainable
weights, which can be updated after the presentation of a
training sequence:

w<—w+ZAwt- 2

t=1

For typical supervised learning, we update the weights via
gradient descent:

Awt :Oé(Z—Pt) vat- (3)

where « is the learning rate. We choose the simplest form
P, = w?lx; and substitute (1) into (3), we obtain the
Widrow-Hoff rule, which is the supervised-learning base-
line we would be comparing the 7'D methods to:

Awy = a (z —whay) 2. 4)

2.1.2. TD(1) APPROACH

However, we can modify the z — P; so that it is represented
as a sum of temporal differences:

m

2=Pi =Y (Pey1— D)
k=t

def

where P41 = 2. (5)

Substitute Eq.5 into Eq.3, we obtain

m m

A’LUt = ZO&Z(Pk+1—P]C)vat
t=1 k=t
t
= a(Py1—P) Z Vo Pe. (6)

k=1

Since Awy is only dependent on a pair of successive predic-
tions {P;, P;1+1} and the sum of past gradients, this proce-
dure can be performed incrementally without the final reveal
of z. Therefore, its more computationally and memory-
efficient.

We refer to the approach above as T'D(1) approach. Since
it is simply an alternative calculation method of the same
training procedure as Eq.2, we have therefore proven 7"D(1)
produces the same weight changes as the Widrow-Hoff ap-
proach.

2.1.3. TD(\) APPROACH

Sutton proceeds to further expand on the 7'D method by
emphasizing more on the recent predictions via applying
exponential decayed weighting with recency:

t
Awy = a(Pyr = P) Y N VP, 0<A<1 (D)
k=1

It can be noted that 7D (1) mentioned in 2.1.2 is exactly
TD(N)[x=1-

On the other hand, if we take A = 0, the weight increment
is only determined by its most prediction:

Aw; = a(Piy1 — Pr) Vi Py (8)

Due to its overall simplicity and formal similarity to Eq.3,
Sutton consider it to be an focal point for comparison.

An important advantage to adopting exponential decay is
that it could be computed incrementally, 7.e.

def: er =31 _ ARV, P,

then: €i+1 =)\et + vat+1 (9)

which, as have been stated, improves computational effi-
ciency.

2.2. Bounded Random Walk

Sutton constructed a simple dynamical system, the bounded
random walk, to demonstrate the effectiveness of T'D meth-
ods.

2.3. Environment Setting

As visualized in figure 1, a bounded random walk is essen-
tially a sequence of unit walks subject to a limited action
space, with the start and terminal conditions given. In our
case, all walks begin in state D. From states B,C, D, E,
and F', the walk has a 50 — 50chance of moving either to the
right or to the left. If either edge state, A or G, is entered,
then the walk terminates. We wish to estimate the probabili-
ties of a walk ending in the rightmost state, G, given that it
is in each of the other states.

@@@é@@@

Figure 1. Visualized environment

2.4. Model Construction

We then apply linear supervised-learning and TD methods
to this problem.

Firstly, we define the observation-outcome sequence:

L1, X2, L3y -y L, 2.

We define x; based on the corresponding state the agent is
in at times step ¢. For each non-terminal state ¢, we have a
corresponding state vector x;; if the walk was in state ¢ at
time ¢ then our observation x; = X;.

In this case, the vectors {x;} were the unit basis vectors
of length 5, one-hot encoded. For example, for state C,
x; = [0,1,0,0,0]T.

Since the probabilities P4, = 0, Pa—g = 1, we set
z4 = 0,zg = 1. For the intermediate states, the proba-
bility of our agent going either directions is equal. There-
fore theoretically, Psiote = W, which indicates
the sequence 24, Pp, Pc, ... Pr, 2¢ is linear, specifically
[0, %, %, %, %, %, |. These are the ideal predictions which
we would later use to calculate the RMS-error of our training
results.

With the above parametrization, we began the replication of
Sutton’s results.

3. Experiment Replication

As the syllabus mentioned, we divided the experiment into
three questions. We first generate the necessary data on
which we would train out agent, the length distribution of
all data is shown in figure 2.

To replicate figure 3 — 5, we conducted 3 experiments cor-
respondingly. For Experiment 1, the following two points
need to be noted. w is to be updated only after the com-

plete presentation of a training set, and each training set was
presented repeatedly until convergence. The experimental
results can be found in section 4.

The length distribution of sequence data

2004

number

100 4

50 1

10 20 30 40 50
sequence length

Figure 2. Distribution of generated sequence lengths

For experiment 2, the following three points need to be
noted. The same data with experiment 1 will be used but
each training set was presented once to each procedure.
Weight updates now are performed after each sequence.
And all components of the weight vector were initially set
to 0.5.

In experiment 3, all the pre-related work has been completed.
We calculated each lambda under the optimal alpha and find
the best lambda using function train_2() . The experimental
results and image display can be found in section 4.

The corresponding pseudocode for our experiments are pre-
sented at section 8.1.

4. Results and Comparison

In this experiment, we obtained results similar to those in
Sutton’s paper. As shown in the figure below, Experiment
1 compares our results (figure 3(a)) with Sutton’s (figure

3(b)).

ERROR

(a) (b)

Figure 3. (a) Our results (b) Sutton’s results

The trends of the two graphs are similar. As) falls below 1,
performance swiftly improves until it peaks when A reaches
0. Contrary to Sutton, our experimental results show a

smaller RMS error. With deliberation, we considered the
following factors.

Since the experimental results are greatly influenced by the
choice of learning rate and convergence threshold. Different
choices of convergence thresholds may affect the experimen-
tal results. Additonally, our weight initialization method
varies from Sutton’s, as Sutton didn’t specify the weight
initialization method for Experiment 1 in the paper. With-
out loss of generality, we employ the np.random.uniform()
method to initialize weights through uniformly distributed
random sampling, which may also cause a different result.

The n-step TD methods on random walk are introduced in
chapter7.1 of Sutton’s book, and the random walk problem
is the same as that in this experiment. Different from n-step
TD methods, T'D(\)is equivalent to the sum of different
n results in n-step TD methods weighted by the weight of
A"~1(1 —). When n is 1, the method is equivalent to
TD(0). When n goes to positive infinity, the method is
equivalent to 77D (1). For T D(\), with smaller), the ex-
perimental result should closely align with the case where n
has a smaller value. This translates to the elbow of the curve
shifting from left to right. Figure 4 showcases Experiment
2. It provides a comparison between our method, Sutton’s
paper, and Chapter 7.1.

h=1 (Widrow-Hof)

00 01 02 03 04 05 06

(a) (b)

Average 043
RMS error
over 19 states 04
and first 10
episodes

Figure 4.

(a) Our results (b) Sutton’s results (c) Chapter 7.1’s results

Our experimental results show that different values of A
correspond well with the trend of different n values, as seen
in the right figure. As A increases, the elbow of the rising
curve shifts to the left, aligning well with Sutton’s results.
And it also demonstrates that the performance of the results
improves with the decrease of A, reaching an optimal value
at 0.3. Beyond this point, as A continues to decrease, the
results gradually deviate from the optimal value.

The results of Experiment 3 are illustrated in the figure
below. Figure 5(a) represents our results, while Sutton’s
results are depicted on figure 5(b). Both figures show sim-
ilar trends. Both evident that the optimal value for A is
approximately 0.3 under the optimal «, aligning with Sut-
ton’s findings, which also remains consistent with the results
from Experiment 2.

(a) (b)

Figure 5. (a) Our results (b) Sutton’s results

5. Discussion

In this section, we mainly discuss the effect of parameter A
and why A = 1 has better performance than A = 0. We first
recap the formula for A-return:

T—t—1
Gr=(1=X) Y NG +ATIG (10)

n=1

It’s obvious that when A = 1, the first term will be elimi-
nated, transforming the formula into a standard MC return
with only the latter term preserved. In contrast, when A = 0,
only the term Gy.; 1 remains, which can be seen as a sim-
plified TD(\) with a single step information.

There’s a common flaw for MC methods in actual implemen-
tation, which is the high variance problem given the sampled
trajectories from the environment. In contrast, single-step
TD learning doesn’t have such disadvantage, by avoiding
the computation for the whole trajectory. Therefore, it’s not
surprising that A = 0 outperforms A = 1.

Additionally, we can give the proof regarding the optimality
for A = 0. We can express G441 as:

Gri41 = Ry + 7V (s141) (11)

The T'D()) is reduced to a temporal difference learning
with the Bellman error:

g = Es,’r,s’<Rt + ’YV(SFFI) — V(St))Z (]2)

Satisfying this error, the algorithm’s optimality can be
proved by the optimality of the Bellman equation [3].

6. Conclusion

6.1. Reflection on the Replication Process and
Discussions

In our replication of Sutton’s experiments, we accomplished
a thorough understanding of TD(\) methods and their appli-
cation in the classic experimental environment, ’bounded
random walk”. Our results, while slightly different from
Sutton’s, potentially due to the randomness and different
initial conditions, were consistent with the primary conclu-
sions of his paper. The TD(\) methods indeed outperformed
the Widrow-Hoff approach, especially for smaller \.

Through our research we have encountered numerous pit-
falls. For instance, during the replication of figure 3, we had
trouble understanding when to update weights w and stop
repeatedly present a given training set. In Sutton’s paper the
terminal condition is described as “when the procedure no
longer produced any significant changes in the weight vec-
tor”, therefore we introduced a threshold on the Euclidean
norm ||Aw]|| to determine its convergence. This method
proves to be effective and enables a decent replication of
the original figure.

In addition, we were not able to make the model converge
within appropriate time initially due to poor selection of
the hyperparameters “learning rate o” and “convergence
threshold €”. To elaborate, large a and small € would
cause ||Aw]| to vibrate around the threshold, resulting in
the algorithm failing to converge. We eventually settled
on a = 0.01,¢ = 0.001, such that we minimize the er-
ror within (1.8, 4)s without preventing the model’s conver-
gence.

During the process, we also figured out it is necessary to
re-initialize w for every batch of training data, otherwise the
RM S metric wouldn’t have been justified, in the sense that
it is supposed to be “averaged over training sets”.

Lastly, although trivial, we tweaked the plotting function of
figure 4 so it cuts out the errors greater than 0.80.8. It is jus-
tified by the fact that without doing so the figure would lose
proportion due to a few outlier errors being exponentially
larger than the rest and dominating the frame. If we were
to reflect on the original figure, it is apparent that Sutton
adopted a similar approach due to the same reason.

Proceeding the experiments, we discussed the impact of
parameter A and provided a compelling argument on why
A = 0 has better performance than A = 1. The high variance
issue in Monte Carlo methods and the optimality of Bellman
equation supported our arguments.

This replication process and ensuing discussions have not
only validated the original findings of Sutton’s paper but also
deepened our understanding of the fundamental principles
and intricacies involved in reinforcement learning.

6.2. Final Remarks

To sum up, our replication of Sutton’s 7'D(\) methods
serves as a testament to the efficacy and relevance of these
methods in temporal prediction problems. Despite minor
discrepancies, our results aligned with Sutton’s primary find-
ings and reinforced the supremacy of 7'D(\) methods over
traditional supervised learning approaches in reinforcement
learning tasks.

7. Reference

[1] Sutton, Richard S. ”Learning to predict by the methods
of temporal differences.”Machine learning 3 (1988): 9-44.

[2] Samuel, Arthur L. ”Some studies in machine learning
using the game of checkers.” IBM Journal of research and
development 44.1.2 (2000): 206-226.

[3] Alekh A. and Nan J. and Sham M. K. and Wen S. “Rein-
forcement Learning: Theory and Algorithms” 2021.11

[4] Richard S. Sutton and Andrew G. Barto. “Reinforce-
ment Learning: An Introduction”, MIT Press, Cambridge,
MA,2018.

8. Appendix

8.1. Pseudocode

Below are a list of pseudocode for the algorithms mentioned
in the paper.

Algorithm 1 Data Generation
output :data
data<+ []

for 7 < 0 to 99 do
batch < []

for j < 0to9do
pos « 2

sequence<— []
while pos # -1 or pos # 5 do
action < random choice 1 or -1
pos <— pos + action
sequence.append(pos)

end
batch.append(sequence)
end

data.append(batch)

end

Algorithm 2 update_weights function

input :w, current_pos, next_pos, alpha, lamb, e

output :delta_w, e

Initialize delta_e as onehot posstion encoding by current_pos
e < lamb x e + delta_e
delta_w < alpha x (state_value(w, next_pos) — state_value(w,
current_pos)) X e

Algorithm 3 train

input :data, alpha, lamb,convergence_threshold
output :err
Initialize: err <— 0
for batch € data do
w < randomly and uniformly choose by 1x5 while True do
delta_w < [0] x 5
for sequence € batch do
e < 0 for idx of batch do
delta_w, e <—update_weight(w, sequencel[idx],
sequence[idx+1], alpha, lamb, e)
end
end
w — w + delta_w
if norm(delta_w) <convergence_threshold then
| err < err + rms(batch,w,P_ideal) break

else
end

end
err < err/ len(data)

Algorithm 4 train2

input : data, alpha, lamb
output :err
Initialize: err < 0

for batch € data do
w[0.5] x5

for sequence in batch do
delta_w <+ [0] x 5

e+ 0
for idx of batch do
deltaw, e <—update_weight(w, sequence[idx],

sequence[idx+1], alpha, lamb, e)

end
w < w + delta_w

end
err < err+rms(batch, w, P_ideal)

end
err < err/len(data)

